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NOMENCLATURE 

A m Cross-sectiooal area of the bar 

c m Phase velocity, c ■ ]/— sec B/2, in./sec 
P 

C m Constant 

C^ C2 « Integration constants 

E = Complex modulus, psi 

^i = Real part of complex modulus, psi 

Eg = Imaginary part of complex modulus, psi 

E* = Magnitude of complex modulus, psi 

f  = Frequency of vibration when Re ■ 0, Hz 

Im - Imaginary part of the ratio of the acceleration of the driven end of the bar to that 
of the free end 

L m Length of the test bar, in. 

m = End mass, lb-sec2/in. 

n ■ Mode of vibration 

u   / 8\ 
p = -   f 1 - i tan - I; see also definition below eq 4 

Q m Absolute value of the ratio of the acceleration of the free end of the bar to that of 
the driven end 

Q'  m Measured acceleration ratio when Re = 0 

R m Mass ratio 

Re - Real part of tbe ratio of the acceleration of the driven end of the bar to that of the 
free end 

t m Time, sec 

u - Displacement at any section of the bar as measured on the x - y coordinate 
system, in. 

ff = Amplitude of displacement u, in, 

u0 = Displacement at the fixed end of the bar, in. 

U0 = Amplitude of displacement u0, in. 

x - Axial coordinate, in. 

y * Normal coordinate, in. 



vi NOMENCLATURE (Cont'd) 

' raw2 Dt:(. b\ 

6 " Angle by which strain lags stress, radians 

( - Strain, in./in. 

( - Amplitude of strain in a sinusoidal excitation, in./in. 

f = Frequency ratio, f = wL/c 

£' - Frequency ratio when Re = 0 

p = Mass density, lb-8ec2/in.4 

a = Axial stress, psi 

ff = Amplitude of stress in a sinusoidal excitation, psi 

<A = Phase angle between bar end absolute displacements, radians 

ui = Exciting angular frequency, rad/sec 

a' = Exciting angular frequency when Re = 0, rad/sec 
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INTRODUCTION 

The U.S. Army Cold Regions Research and Engineering Laboratory (USA CRREL) employs a 
test technique for determining the complex moduli and damping of frozen and ncoflrosen soils under 
vibratory loads. This involves submitting an upright cylinder of the material to vibration at the 
lower end with the upper end free. Input and output wave characteristics are measured by 
accelerometers fastened to a base plate and top plate, respectively. Other investigators are known 
to employ similar techniques for testing a variety of materials. In the analysis of test measurements 
to obtain the desired properties of the material the authors have determined the effect of the top 
end plate. They show that the mass of the end plate in comparison with the mass of the sample has 
a significant effect on the measured moduli and damping properties of the material. 

A convenient method of measuring the complex modulus of a linear visooelastic material over 
the audiofrequency spectrum is to apply a harmonic displacement to one end of a bar of the material 
and measure the ratio of end accelerations. The problem has been considered by Lee (1963) and 
Brown and Selway (1964) whose orientation was directed to materials as diverse as soils and poly- 
mers. The solutions given by these authors specify a free-end boundary condition. However, many 
experimenters using this technique have found it convenient to measure the end displacement with 
an accelerometer. The work presented here accounts for this end-mass effect and indicates the 
deviations one may expect from the simpler free-end theory. 

The theoretical work presented here is supplemented by experimental results which indicate the 
applicability of the theory. 

THEORY 

Derivatloa of eqnatlons for displacement, strata aid stress 

The equation describing the motion is most easily obtained by assuming the x aud y axes fixed 
in the bar (see Fig. 1) at the driven end x = 0 and the system given a displacement u0 > (/0 
exp (iot). 

The equation of motion is 

toP, X „x = p      (u + u0) (1) 
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where o is the uniaxial stress, p is the mass density and u is the axial displacement of a point in 
the bar measured relative to the moving coordinate system. Taking the stress at a point in the bar 
as a = jrexp (iwt) and the strain as * = f exp U(wt - S)]. the constitutive law may be written as 

^ = 'exp {18) * E* exp (ifi) H £(iw). (2) 

Taking u = IT exp (iwt) and eq 2 in the form 

du 
a = Eiicj) 

dx (3) 

eq 1 goes over into the ordinary differential equation 

dx» 
P8» = -P2l/o 

Figure 1.  Coordinate system. 

(4) 

where p2 = pw8/£(itü). 

The solution to eq 4 is 

ff + f/0 = Cjcospx  + C2sinpx 

where C l and C2 are obtained from the boundary conditions 

«(O.t) = 0 

d* 
Aa(L,t) m -m— (u + "o^x-L* 

A8 

(5) 

(6) 

A is the cross-sectional area of the bar and m is the end mass. Applying these boundary conditions 
to eq 5 the displacement solution is 

P(x,a>) 
Un 

= cos px + (tanpL + y \ 
1 - ytanpL / 

sinpx - 1 (7) 

where 

y = 
mar 

pAE{i(o) ' 

The stress and strain at any point in the bar are respectively 

a = £»exp(i8)< 

(8) 

(9) 
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and 

« = t/op|YUPpL - ^)co»P« - slnpxlexpd«!).. (10) 

The solutions In eq 7-10 may be put in more meaningful form by substituting the expreleions for p 
and Y and separating the right-hand side into real and imaginary parts. The complex result repre- 
sents the magnitude of the displacement, strain or stress and the phase relative to the base dis- 
placement at any point x. 

Solvtloa la teraa of the bar end acoeleratloa ratio 

A simple relationship may be found for the ratio of bar end displacements (or accelerations) 
that is useful in experimental measurement of the complex modulus. Rewriting eq 7 for x = L gives 

V(L,<ü) + UQ 

"o 

secpL 
1 - ytanpL 

It is convenient to define the frequency ratio 

Q. (ID 

f = ^ (12) 
c 

where c is the phase velocity y/E*/p sec 5/2.  Using eq 8 and 12 and the definition of p, eq 11 may 
be put in the form of a real and imaginary part 

^o 
Re 4  i Im (13) 

and 

n(L,(i>) + UQ 

where it may be shown after some algebra that 

Re - coshK'tan - j(oos f - R £ sin £) + R £ tan - cos £ sinh K Uw - j (14) 

Im = sinh fe tan - j (sin f + Rf oos^) + Rf tan-sin f cosh U tan-J (15) 

where R is the mass ratio, m/pAL. Equations 11 and 15 are also valid for large values of 8, no 
simplifying assumptions having been made. 

Use of end acceleration ratio to meaanre the complex modiilna 

Equations 14 and 15 suggest an experimental technique to measure the complex modulus of a 
linear visooelastic material. The experimental technique for measurement of in-phase and quadra- 
ture components of the response is within the state of the art with commercially available equipment. 
Measurement of the complex end displacement ratio (or equivalently. the acceleration ratio) yields 
experimental values for Re and Im. Substitution of these two values in eq 14 and 15 yields two 



4 LONGITUDINAL FORCED VIBRATION OF VISCOELASTIC BARS WITH END UASS 

simultaneous transcendental equations which may be solved numerically for the two unknowns £ 
and tan 8/2 for any mass ratio R. Having then solved for <f and tan S/2, the complex modulus may 
be easily obtained from eq 12 and the definition of the phase velocity c. Specifically 

£• = pc2 cos2 | = p^cos^2. (16) 

Hence 

and 

El = £• oos5 (17) 

E2 = E* sin 5 (18) 

where El and Eg are real and imaginary parts of the complex modulus. 

MeuarMMBt of the complex modulus at 90° phase shift 

A simple experimental method to determine the complex modulus in the vicinity of the bar 
resonances was suggested by Lee (1963) and Brown and Selway (1964). The phase relationship 
between the end displacements is given by eq 13.   If 0 is the angle between the displacement of 
the driven end to the free end of the bar 

0 = tan"1^. (19) 
Re 

It follows that when Re = 0 there is a 90° phase shift which is easily measured experimentally 
without sophisticated equipment.  For this case eq 14 and 15 reduce to 

Re = cosh K'tan-j(cos f' - Rf'sinf) + Rf'tan - cos ^'sinh K'tan - j     0    (20) 

and 

Im = sinh U' tan _ j(sin f' + R? cos ^') * R <f' tan - sin ^ cosh K1 tan - 1 .    (21) 

Q' is the measured acceleration ratio when Re     0: the frequency ratio at this point is defined as 
^ = f' and the frequency as /'. 

The experimental procedure is to adjust the frequency until the phase relationship is 90°; at 
this point the frequency and the acceleration ratio Q' are measured.   Using Q', eq 20 and 21 may 
be solved numerically for «f' and tan 8/2; hence the complex modulus may be calculated using 
eq 16-18. This method limits the data to a specific frequency in the vicinity of the bar's resonant 
frequency.  £' does not generally coincide with ^ at resonance as is shown later in this report. 

A compjter program or a set of curves, both given in this report, may be used to solve for £' 
and tan 8/2 using experimental data.  A computer program in Fortran IV is given in Appendix A to 
solve eq 20 and 21. This program uses the Newton-Raphson method (see Scarborough, 1955) to 
solve for ^' and tan 8/2. The program reads R, <?', p, CJ', L, mode and base amplitude and prints out 
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c, f', tan 5/2, £♦, E., E2 and base stress. Alternatively, curves are given in the section. Com- 
puter generated curves and discussion (p. 7), to obtain «f' and tan 8/2 directly using experimental 
values of R and (?'. 

Stress, strain and displacement for any value of x 

The separation of eq 7-10 into real and imaginary parts to obtain useful formulas for stress, 
strain and displacement as a function of x leads to complicated algebraic expressions. This effort 
may be circumvented by making use of the computer's ability to do complex arithmetic directly. 
The stress, strain and displacement were evaluated at five stations along the bar for various mass 
ratios. Typical results are given in Table I. The computer program is given in Appendix B.  Values 
given are for a soil with E* = 78,000 psi and tan S/2 = 0.06. 

The maximum stress occurs at x = 0 for the first three modes. An expression for this stress 
derived from eq 9 and 10 is 

fftO.o) = E(Mt/0pfi
tanpL  t l). (22) 

\1 - ytan pL/ 

Applying the complex definitions of p, E(icj) and y, and considering the simple case when the 90° 
phase shift occurs (Re = 0), one has 

Un£'E*Q' f-      ä /        ä        M 
iriO.cj) = — [/ tan - - J? - j(R tan -  + 7" 1 (23) 

«here 

R   = (cos £ - /?£' sin f) sinh W tan - j + R£ tan - cos £ cosh f £' tan - j 

I    H (sin f1 + R^' cos f') cosh f^' ten - j + ß^1 tan - sin ^ sinh K" tan - j 

and Q' is the experimentally measured value of the acceleration ratio at a 90° phase shift.  The 
magnitude of the stress is given by 

| (7(0,0)))   =   N/ReV) + ImV) . (24) 

This calculation is built into the standard program for calculating tan £/2 and £♦ from experimental 
data (see Appendix A). 
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Redaction of theory to earlier work 

For tan 5/2 = 0 eq 14 and 15 reduce to the equation for the eigenfrequencies of an elastic bar, 
i.e. 

cot ^ = Rf (25) 

as given by Timoshenko (195^). 

For R = 0 (but including damping), eq 20 and 21 reduce to those given by Brown and Selway 
(1964), i.e. 

f = J (2n - 1) (26) 

and 

•te) 
2 sinh* 

tan I  = S^~L (27) 
2 n(2n - 1) 

where the notation has been changed to conform to this report.  The latter two equations are similar 
to those given by Lee (1963) if the small angle assumption is made and only the first mode is con- 
sidered. 

COMPUTER GENERATED CURVES AND DISCUSSION 

Response corves Q versos ( for three modes (Fig. 2-4) 

Figures 2-4 give the absolute value of the acceleration ratio of the free end of the bar to the 
driven end (defined as Q) as a function of the frequency ratio £ for three modes of vibration. In 
generating these curves, tan 5/2 was arbitrarily set at a constant value for each curve although in 
a real material one would expect some variation with frequency.   £ was incremented and values of 
Q and ^ were plotted for selected values of mass ratio R.  In each mode the effect of end mass is 
obvious. The resonant frequency is lowered dramatically with increased R and there is also a 
decrease in Qmax. the maximum value of the response. 

The computer plotter was programmed to print a plus sign on the Q versus ^curves (see Fig. 
2-4 and Appendix C) when the phase relationship was 90°(corresponding to Re = 0), the convenient 
experimental point discussed in the section, Measurement of the complex modulus at 90° phase 
shift (p. 4). This point corresponds to specific values of £' and Q' also discussed previously. Un- 
less tan S/2 is very small, Q' does not coincide with Qmaz but is shifted to the higher frequency 
side of resonance. For the first mode with R     0, eq 20 reduces to cos £' = 0; hence ^ is n/2 for 
any value of tan S/2 as seen in Fig. 2.  However, for R > 0 it is seen that £' actually in   eases 
with increased tan 8/2 for a given mass ratio R although the true resonant frequency i. lowered with 
increased tan S/2. Experimenters must not confuse Qmax with Q'. 

Variation of ? with R for various values of tan 8/2 (Fig. 5) 

£' is an important quantity in the theory since it is used to compute the magnitude of the complex 
modulus E* using eq 16.   Figure 5 is a computer generated plot of the variation of ^ with R for 
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Figure 2. Acceleration ratio Q vs frequen- 
cy ratio £ tor various mass ratios R and 

values of damping, tan S/2, first mode. 
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Figure 4. Acceleration ratio Q vs frequency ra- 
tio £ tor various mass ratios R and values of 

damping, tan 8/2, third mode. 
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Figure 3. Acceleration ratio Q vs frequen- 
cy ratio £ for various mass ratios R and 
values of damping, tan S/2, second mode. 
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Figure 5.   Variation of £' vs mass ratio R for 
various values of damping, tan 8/2. 
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various values of tan 5/2. £' decreases significantly with increased R especially for the higher 
modes.  For any given value of R, £' increases with an increase of tan 8/2 as previously seen from 
Fig. 2.  Fig. 5 was generated from eq 20; tan S/2 was specified and for an incremented value of R 
a half interval search method (see Kuo, 1965) was used to And and plot the values of £'. The 
oooputer program is given in Appendix D. 

Tan 8/2 fron neasnred values of Q' for typical mass ratios (Fig. 6-8) 

These curves permit the determination of tan 8/2 from experimentally measured values of Q' 
for selected values of mass ratio R. The computer program of Appendix A used to solve eq 20 and 
21 was used to generate these curves. 

These curves plot as a straight line on log-log paper down to a certain value of Q' (about 4.0 
for the first three modes) and then show a slow deviation. This implies there exists a relationship 
over the linear range in dach mode of the form 

Q' tan 
8 I 

C 
(28) 

where the constant C is a different number for each value of R. It is easy to show from Fig. 6 or 
directly from eq 20 and 21 that for ß = 0 the constant in the first mode is n/2. 

10 

ronf 
oi — 

CGI 

1 r—i—i—i i i 11 -i 1—i—i i i i i 

-j i i i i i i J 1 l   i\k . i i 
100 

0', AcccKrotion Ratio 

Figure 6.  Tan 8/2 vs acceleration ratio Q', first mode. 
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Figure 7.  Tan S/2 vs acceleration ratio Q1, second mode. 
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Figure 8. Tan S/2 va acceleration ratio Q', third mode. 
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EXPERIMENTAL WORK 

The experiment 

The/Objective of the experimental work was to check the applicability of eq 20 and 21, which 
include the mass loading effect in the measurement of the dynamic modulus. To do this the theory 
of the section, Measurement of the complex modulus at 90° p/iase shift (p. 4), was employed using 
a polymer bar to simulate a soil sample. 

The experiment consisted of driving the bar with a small end mass in the first three modes and 
measuring Q', the measured acceleration ratio, and /'. the frequency where the 90° phase shift 
occurred. The lest was then repeated with a larger end mass, with the bar shortened to maintain a 
constant frequency in each mode. The computer program of Appendix A was then used to compute 
E* and tan 5/2, both of which should be invariant with respect to mass ratio R since the assumption 
of the theory is that E* and tan S/2 are functions only of frequency and are independent of R. The 
check then was the coincidence of E* (or tan 5/2) measured at various mass ratios when plotted at 
the constant frequency. 

Apparatus and method 

A schematic diagram of the testing system is shown in Figure 9. The source of sinusoidal 
displacement was an MB Electronics Model EA 1500 electromagnetic exciter which was driven by 
an amplifier and audio oscillator (signal generator). A frequency counter was used to measure 
frequency. Two piezoelectric accelerometers were employed to measure acceleration at the ends of 

CHAROE 
AMPLIFIER 

TT 

1ACCELEROMETER 

TEST  BAR 

, ACCELEROMETER 

MB I I    POWER 
EXCITER   |       lAMPUFIER 

TTTTTTTT"^^ 

VTVM 

VTVM 

- PHASE   METER - 

"- OSCILLOSCOPE 

FREQUENCY 
COUNTER 

SIGNAL 
OENERATOR 

Figure 9.   Schematic of the testing system. 
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Brats Wtlght 
Vn"  thü», l" diom H«x Socket Cap Scrtw 

#8-32 »Vi" long 

Cimant 
Eoilmon 910 

Ttst Bar 
V«" diom 

6 to 10" long 

Tapptd for Stud 
#10-32« K»" long 

Figure 10.   Test specimen assembly. 

the bar. The output from the accelerometers was fed into two charge amplifiers and read from two 
vacuum tube voltmeters. The amplified signals were displayed on a two-channel oscilloscope and 
the phase shift was observed on the oscilloscope.  It was found that the phase of the two signals 
could be accurately measured on the oscilloscope; hence in the latter part of the experiment the 
phasemeter employed in earlier experiments was omitted. 

The test specimens were %:in.-diam bars of low density polyethylene. The measured specific 
gravity of this material was 0.915. The bars were used as received from the supplier with no heat 
treatment and only the ends machined. All testing was done at 750F t 20F. The method of fasten- 
ing the end mass and fixing the bars to the exciter is shown in Figure 10.  A 2-gram accelerometer 
was glued with Eastman 910 cement directly to the mass or in the case of the low mass tests directly 
to the free end of the bar. Bar lengths are given in Table II. 

Calibration of the accelerometers was done at the three frequency ranges of interest (data were 
recorded in the first three modes) at the driving magnitude by driving the accelerometers back to 
back. Three different calibration constants were used. All tests were made with the exciter 
acceleration set at 10 G. Phase shift in the electronics was carefully checked.  The transverse 
vibration of the bar was checked with a stroboscope and found to be insignificant. The signals 
showed no visible distortion. 

AU data were recorded when the phase angle between the two signals was 90°. The value of 
Q' was measured and the frequency was recorded.   £', tan 5/2, E*, E1, Eg and base stress were 
then computed using the computer program given in Appendix A. The experimental results are 
presented in Figures 11 and 12 and the computed results are presented in Table II. 
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Figure 11.  Experimental results, E* vs frequency. 
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Table n. Computed results using experimental data.* 

Mass Bar Frequency i4cce/ Frequency 
Test ratio length r ratio ratio E* ff. E, 
00. R (in.) (Ht) Q' e Tan 5/2 (psi) (psi) (pai) 

1 0.029 10.02 704 8.21 1.53 0.0771 72160 71302 11097 
2 .029 10.02 2236 2.53 4.58 .0811 80843 79780 13067 
3 .029 10.02 3842 1.66 7.64 .0711 85858 84989 12182 

35 .029 10.00 712 10.25 1.53 .0619 73617 72954 9076 
36 .029 10.00 2228 3.40 4.58 .0610 79952 79367 9737 
37 .029 10.00 3830 2.12 7.64 .0568 84994 84446 9632 
38 .029 10.00 3830 2.18 7.64 .0553 84995 84475 9384 
39 .029 10.00 2215 3.34 4.58 .0621 79022 78413 9791 
40 .029 10.00 707 9.68 1.53 .0655 72487 71866 9471 
41 .029 10.00 718 9.71 1.53 .0653 74760 74123 9739 
42 .029 10.00 2226 3.09 4.58 .0670 79807 79092 10659 
43 .029 10.00 3839 2.05 7.64 .0586 85393 84807 9985 
44 .029 10.00 702 9.83 1.53 .0645 71466 70871 9197 
45 .029 10.00 2249 3.06 4.58 .0676 81460 80716 10982 
46 .029 10.00 3882 2.03 7.64 .0591 87316 86706 10304 
59 .489 7.00 722 12.42 1.08 .0476 73470 73139 6963 
61 .414 8.25 2215 2.43 3.72 .0530 81364 80008 8600 
62 .414 8.25 4067 0.91 6.65 .0526 86103 85626 9047 
79 .504 6.69 738 12.50 1.08 .0471 71259 70943 6696 
85 .410 8.25 3991 0.99 6.65 .0489 82887 82491 8089 
86 .436 7.75 2326 2.33 3.70 .0539 80051 79685 8616 

•^t, tan 5/2, E*, E,, and Ej were computed using the computer program of Appendix A. 

Experimental results 

The ranges of E* and tan S/2 which were computed from the experimental values of Q' and /' 
for various mass ratios are shown in the upper portion of Figures 11 and 12, respectively, at the 
frequencies corresponding to the first three modes of vibration. To illustrate the errors introduced 
in computing the complex modulus ignoring end-mass effect, the lower halves of these figures are 
plots of the same data calculated from theory neglecting end-mass effect. All data are taken from 
Table II and there are seven points at each frequency (some are superimposed). 

It may be concluded that large errors are introduced in the computation of E* if mass loading 
effects are neglected. For example, for R as low as 0.029, E* will be about 6% low in the first 
three modes; for ft = 0.5, E* will be about 50% of its true value in the first mode. This is illustra- 
ted graphically in Figure 11. 

The effect of mass loading on the computation of tan S/2 is seen in Figure 13.  The errors 
introduced using R = 0 theory are about 1% for R = 0.029 but become greater with increased mass 
ratio and mode number. For example. Young (1967) gives an error of 130.6% high for tan 8/2 for 
R m 0.414 in the third mode. The spread in the experimental data for tan S/2 for constant values 
of R makes it difficult to interpret the data in these tests. 

CONCLUSIONS AND SUMMARY 

The theory given here, including end-mass effect, leads to more nearly correct results in 
computing the complex modulus from vibrating bar test data and should be adopted. For laboratories 
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using the 90° phase shift measurement technique, this report presents curves that allow direct use 
of experimental data to calculate the complex modulus. For experimental data that fall outside the 
range of these curves, a computer program is presented for the same purpose. 
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APPENDIX A. TAN 5/2 AND E* FROM MEASURED Q' AND FREQUENCY 

WH |T(   (1,^1) 
31    P[A[)(1,:)     A,n.HO, AL.l-f ,N.UO 

1    F-OPVA T ( 3r 1 o . 7 ,F- 1 0 . /i , I ^ . I',. r   10.-) 
I f   ( M )    1 , A 0 « 'l 

'i  HI = i ./r* 
C THF;    rOLLOV.'ING   't   ST A TF MrNT<-,    AK".    uSfO   FO'^   CALCULATING    THC 
C riPST    TU I Al     v.'.UJf"    or    LO^n    FACTOP,    DFL/?. 

yrsi^-N 
E'fs-n.ono l 
PI =.T. I A 1 S9 
x-Pi« e?. »xN-i. >/?. 
ÄS IN-Al  Or. ( ( 1 . 4 S^PT ( 1 , +n-5«r) ) /H ) 
YrAS IM/y 
r,0    TO    ( ? , 6 . 2 . 6 » ?» 6 ) t N 

6 en = - n i 
r TM[     FOLLOWING    1 ^   T.T / 1 f M[ NT f.    Apr    F On   THE    ITCHATIONS 

?    SINHr (E:xP< X»Y )-EXP(-X»Y ) ) /? . 
CO.SHr (i:xf'( X«Y )+FxP{-X»Y ) ) /2. 
r i - coi.H« ( cc.( x > -A*X*:- i M( x ) ) < A«x«Y»r.05(X) »si NH 

r?r5, INH* f SlNfXI +A*X*COr-. (X' ) ) -»COSH« A«.x«Y*r. 1N( xi-ni 
riyT?-ro--M*(-(i.+A)«siN(y)-A<x''(i.-Y*Y)«ror, (x)) 
FTXI ;:--rosn->( ( I, + A)»Y»SIN{X)+2.»A»X*Y*COS(X) ) 
KlX=5INH*((I,4Al«Y«COS(y)-2,«A«X«Y«S|N(X))+FlXT2 
F2X = SINH« ( U .■» Al»COS(X)-A«X« < ! .-Y»Y J«51N<X) )+FaxT2 
F 1 Y = 5: INH« ( ( 1 . +A HiX tCO:^ X) -A »Xi'X ■« r IN( X ) ) 4 COSH ;< A * X « X » Y «COS ( X ) 
FPyrCOSM« ( ( ! .+ A )*'/ »SIN(X) + A*X«X«CO<". ( X) ) +S IMHSA i X « K* Y * S I N ( X ) 
H-F I X«r?Y-F-'J y*F'2X 
HX = F 1 tf-?Y-F 2»F 1 Y 
MY-r?»Fiy-ri*r2x 
DF l.X-- -HX/H 
DFLY^-HY/H 
I F t AHS ( n' i v i -t Ps)   ■-, s, i o 

ci   if c APS(iif i,v )-[ t\-,)   .-»o.^r., i r; 
1 0    X-- X-t 01 LX 

Y- V-l or L Y 
r,o   TO   ? 

30      PfLTA-2.vATAM(y) 
C- ( ,". «I1 I KLF*Al   )/x 
PO:  < PO^O.O.^fil '   ) /i^PtP-" \P,) 
FrPD -•' C«COS<r>tLTA/<-'. ) ) tip 
11" 1 rF.*.COS (^n  TA ) 
IF2 = f »S IN(UE l.TA ) 

C STWrSS    CAL CUL AT ION' 
corr-uofx^FuvAt 
A fi - r> I N ( X ) 4 A»X * C O.^ ( X 1 
n^ = COS( X )-A>:x'-S IN(X ) 
Cc. = A3X*Y 

PF-AI  I   rF'^.tS INH-t C^'COSf X ) «r OSM 
AM i or, = A'•« r GSM4 c!''«s i M t \ i - s I \" i 
STPfSS = COr F ItSOWT ( ( AMI GC«Y-Pi   ALL ) •;-»24 ( PC ALL «-Y4-AM ICG ) >«2 ) 
IC = C 
I r - F: 
v.'to 17r < 3 « 22 )   A . '<. i r . x . v , i ^ , i r , ; r-1 . I' ;•. STPf; ss . M 
CO   TO   31 

«■to CALL   r: v n 
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21    FOPMAT ( 1 Ml .CX t I MH! «ftX. lHOt6X,f'iHr (CP'.) .'•<, «-tMV.'L /C./VX ♦6HT;<( L/?.r'X , 
IOKC( iN/src) «sx.6Hr.' (Pi-n .ox.rtif i. i ■:••.?HL'? »nx.6HM i.-' v,.'.>;. 
IflML   OK   MAP/) 

?? roroMAT (rio.3»r3.?.2x. in.rx.r i: . *, i x ,f IO,/! ,^x. r v.^x, i7.rix, iv.^x, i 
i'ix.r i o.fi,' x.rc..? > 

TYPICAL    INPUT 

^r, L r N      mr-PL 

o.o n.r>7 o.Pi i 13,0 0226"^ ni i .o-.-ir-or, 
0.07lrvl B.^7 0."! I 1?.° 02?r>r> 01 1 .on-^ _,v, 
0.0 ?^.6 0."1I 13.0 0663^ D? 0.07^r-n7 
0.07153 ?f-.'') O."!! .-'.c> 06fOO 02 0,n7<-,r-07 
0.0 17.^ 0."l 1 13.0 lO^iCJ 03 0.rv3^r-07 
0.071'-.T I7.f> 0.°] 1 13,o 10"n3 03 1.f'3r.'- -0-? 

TYPICAL OUTPUT 

R C F(CPS) WL/C TCEL/2 C{ IN/SEC) 

0.0 e.97 2269 1.571 o.o7cn 126156 
0.C72 6.97 2269 l.ttt C.07C5 1 J51'.0 
0.0 25.60 66 39 ^.712 O.COfl3 123012 
0.072 25.60 6639 «.«ei 0.CÜ79 131567 
o.o. 17.60 lC9fl3 7.851 0.C072 122130 
0.072 17.60 1C9H3 7.369 0.C065 130160 

Et PS II El E2 STRESS L OF M 

1319692 
1518817 

1336218 
1533538 

190230 
217226 

2.691121 
2.B9H1fll 

13.90 
13,90 

1290213 1290065 21383 0.980596 13.90 
1175233 1175017 23113 1.099321 13.90 
1271209 1271076 18381 0.677136 13.90 
1111012 1113921 1866 3 0.815897 1 3.90 
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APPENDIX B. STRESS, STRAIN AND DISPLACEMENT AS A FUNCTION 
OP X AND R (TABLE 1) 

COMPLEX   P,PL,C2.r,AMA,     XI     . LP5i, M GMA , D I SPL .Fi 1 C , QC . YC , EPS 1 
100   REÄD(1.2)    Y.UZ.O.AL.E . V.KOUNT 

?   fOPMAT(3F10.0,F10.^,r 10.0,Fin.^,12) 
IF (KOUNT )ri.7.?i) 

5 WPITF(3,1) 
Y=2.»ATAN(Y) 
A 1 =X 
B|=ytTAN(Y/2.) 
nic=(o.o. i.o)«Bi 
PL-Al-BlC 
P=PL/AL 
f,AMArP#PL 
C2: (CSIN(PL )+GAMA<CCOS(PL ) )/(CCOSCPL )-GAMA«CSIN(PL > ) 
ZN=0.0 

1 I    A = ZN»X 
0=A*TAN<Y/?.) 
nc=(o.o,i.n)*n 
XI =A-ÜC 
FPS = U7«P«(C?»CC0?(    XI     )-CSIN(   XI      )) 
YC=(0.0.1.0)«Y 
EPS I =FPS»CEXP(YC) 
SIGVA^E»LEXP(YC jtfCPS 
HI fPL = U7»(CC0?(     XI    )+C?*CSIN(     XI    )-l.) 
DISPLSsCABSfUISPL) 
DI SPLW^PFLAl  (DISPL ) 
oi SPL I =A iMAr-(r  sr'L ) 
IFCOISPUPJ     Ifi.lfi.IS 

lf>   nPHAr,r-0.n 
GO    TO   ??> 

I r-.    DPHA «-.F = A T AN ( D I SPL I /D I SPLP ) 
?^    ^IGMAr, = CAHc,( SIGMA ) 

SIGMAPrREAL ( SIG./A ) 
S t GMAI=AI MAG(5 IGMA) 
IFCSIGMAPI     17,IB. 17 

|7    .^PHA^-rr ATAN( ^ I i^MA I /S I r.v.'.ir ) 
in rps.c-=CAf»s(Fprii 

FP.:;p=PEAL(rpS) 
EPS I-A I MAG(EPS) 
IF(EPr.P)    l",rc'.!'' 

lo    E PHASE:-A TAN (I pc, \ /f p.^i. ) 
?n    K'^ITF(.-?,.^)    ri^PL.^I'^A,«-rx-, i 

'».'PI T1" ( .T.?l )    0 I'■PL.,- , niO^A^, .rfJCir 

U'P I TE ( .'',? I )    PPMA^.f  , pPMA^P « FPHAf-F 
7M-7N(+0.r'- 
IF ( 7N- I .?n )    M . i ,-'. ! ? 

12   WR Iff ( 3i(>) 
GO TO 100 

7 CALl T X IT 
1    EOPf'AT ( IH1 «!<X, 1 ?HOI.ciPUArtM£ NT , .•'■'V .r,Hr TP« rS ,23X .6Hr. TP A I N/I 
3 FOP-I AT ( /2r, i r..i .hx ..'T, i r,'.. v\ .;.'.' i r./. > 

21    F- OPMA T ( r. 1 ? , /i , 1 2X , G 1 2. -"i . ! ?y . r. 1 7- . /i ) 
6 FOPVAT(//) 
tl    FO'.^'AT ( I « ) 

END 
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APPENDIX C. Q VERSUS £ FOR VARIOUS R AND TAN S/2 VALUES 
(FIG. 2-4) 
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APPENDIX D.   ^ VERSUS R FOR VARIOUS VALUES OF TAN 8/2 (FIG. 5) 

IC = 1 

DO 11 1=1,2 
READ(1.22) 

11 WR1TE(3.22) 
22 FORMAT(IX.VgH 

I ) 
EPS=0.001 
CALL PLOT(ic.o.o.o.6.6.o.ri,i.n.ri.io.o.io,o.i.O) 

CALL PLOT(99) 
30 READ(I.3) Xll,x22,V.fJ 

IF(Xll) 6.7.6 
6 WRITEO.«) N 

R=-0.00125 

DO 25 K=l.6 
DO 10 1=1.SO 
Xl=Xl 1 
X2=X22 
R=R+0.00125 
PI=3.14159 
C0T1=C0S(X1 )/5IN(XI ) 
C0T2 = C0r>(x2)/SIN(X?) 
FX1=C0T1-R«X1+R»X1«Y«C0T1*TANH(X1«Y) 
FX2sC0T2-R»X2 + R»X2«Y*C0T.?»TANH<X2«V I 

70 X^(Xl+X2)/2. 
CO X = COS(X)/5.IN(x ) 
FX-C0TX-R*X+R«X«Y»COTX«TANH(X»Y) 
IF(AD5(rX)-EPr,) 15,15.60 

60 1F(FX»FX1) 50,15,80 
50 X2=X 

FXSsFX 
GO TO 70 

80 XI=X 
FX1=FX 
GO TO 70 

15 CALL PLOT( ICCR.X) 
10 COMTINur 

WR1TF(3.1) Y.R.X 

25 CONTINUE 
CALL PLOT(99) 
GO TO 30 

7 CALL PL.0T( 100) 
CALL EXIT 

1 FORMAT(OF 10.5) 
3 FORMAT(3F10.5.12) 
4 FORMAT (//"JX,4HN =  ,12//) 
CNÜ 

C DATA f OR APPfNllIX  I i  PRor. 

C 
Y R X 

o.n 1.8 0.0 01 
o.n I.Q 0. 1 01 
O.P 1.0 0.2 01 
3.4 5.0 0.0 02 
3.4 5.0 0.1 or 
3.4 5.0 0.2 0," 
6.5 9.0 0.0 0 1 
6.5 9.0 0.1 OT 
6.5 P.O 0.2 03 
0.0 
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